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Summary 

The tube model of rubber e last ic i ty  (GAYLORD 1979, MARRUCCl 1981, 
GAYLORD 1982) is developed in detail and is shown to be able to describe 
both the equilibrium stress-strain, shear modulus and swelling behavior 
and the non-equilibrium elastic behavior of cross-linked polymer 
networks. 

Introduction 

A simple heuristic construct for treating the entanglement constraints 
on a chain in a network is to confine the chain in a hard tube which 
extends to the ends of the chain and which has a square cross section. 
Using this,  a primitive model of rubber e last ic i ty  can be developed, 
using a three-tube network with each tube aligned along one of the 
principal directions of strain and assuming that during deformation, the 
end-to-end chain separation and the tube length change aff inely while 
the tube cross section remains square and changes so as to conserve the 
volume of the tube. In this paper, we wi l l  develop this naive model in 
detail and examine i ts predicted equilibrium stress-strain, shear 
modulus, and swelling behaviors. We wi l l  also show how the non- 
equilibrium, time dependent elastic response of the model can be 
calculated. 

The Equilibrium Elastic Response of the Model 

The free energy expression for a network chain which has n segments, 
each of length b, and end-to-end separation l ,  and which is confined 
within a retangular hard tube of length l and cross sectional 
dimensions a 1, a 2 is (GAYLORD 1979) 

- - =  ~ + T  + + In ala 2 + constant ( I )  
kT 2nb 2 

(We note that eq.(1) has the same form as the free energy expression for 
a chain in a soft tube endowed with a harmonic potential (MARRUCCI 
1981)). 
For the case of a tube with a square cross section, eq.(1) becomes 
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A 31 2 2nb2 
- - -  + - - +  21na (2) 

kT 2nb 2 3 a 2 

We now construct a three-tube network model, taking one tube along each 
of the principal directions of strain (DiMARZIO 1968, GAYLORD 1979). We 
assume that in a constant volume deformation, the tube length and the 
end-to-end chain separation change affinely while the tube cross section 
remains square and changes so as to conserve the tube volume, i .e . ,  

that a21 = a:21~ (MARRUCCI 1981, GAYLORD 1982). For the case of simple 
extension or'compression, the tube oriented parallel to the direction of 

stretch changes as l = X l . ,  a = X-1/2a. while the two tubes oriented 
perpendicular to the direction of stretch change as 
l = X - 1 / 2 1 i  , a = x l / 4 a i  . 

The total free energy of a perfect network of ~ network chains under 
simple extension or compression is given, using eq.(2), by 

ANetwork 1 131i 2 (X 2 2X -I) + ~2nb2 (X + 2x-I/2~ 
: + ~ (3) 

kT 3 L 2nb2 3a'2 ] 
1 

The stress-strain expression for the model is calculated, using eq.(3) 
and ~ = (bA/~X), to be 

F l i  2 ~2nb2 (1 -  x-3/2)I 
(X - k -2) = Lnb 2 + 9ai2 " (k - X -2) ] K kT (4) 

We expect that the cross sectional area of the tube which encompasses a 
network chain prior to deformation, a~, is larger than the cross 
sectional area of the tube surroundin~ the same chain in the 
uncross-linked, parent polymer, a ~ (MARRUCCl 1981). The ratio 

of (ao2/ai 2) which we will denote by the parameter r, should be 

proportional to the 'entanglement trapping factor'. We expect the end- 
to-end chain separation in the uncross-linked, parent polymer, 
Io, to be larger than the end-to-end chain separation in the undeformed 

network, I i .  The ratio of (I i2/Io2), which we will denote by the 

parameter s, should be proportional to the 'front factor'. We can 
make the following identifications: n~ is the polymer concentration, 

2 p; a o = (pb) -1 (deGENNES 1974); and b3p2kT is the plateau modulus, 

G. ~ of the uncross-linked, parent polymer. Overall then, we can 
r~write eq.(4) as 

Io2 ~2 (i - X -3/2) 
= - - s  ~kT +-~- r (5) 

(X - X "2) nb 2 GN~ (X - x -2) 

(We note that i f  we write eq.(5) in the form 

�9 /(X - X -2) = B1 + ~2 (1 - X -3/2) (X - X -2) -I and make a best f i t  of 
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this expression to the experimental extension-compression data of Pak- 
Flory on polydimethylsiloxane networks and of Rivlin-Saunders on natural 
rubber networks, using a least-sum-of-squares criterion, we find that 
BI = 0.356, B~ = 1.430 and the correlation coefficient is 0.973 for the 
Pak-Flory dat~, while B~ = 0.681, 62 : 2.165 and the correlation 
coefficient is 0.899 fo~ the Rivlin-Saunders data (GOTTLIEB 1982)). 
The shear modulus is calculated using eq.(5) and the relationship 

G = lim ~/(X - X-2). We obtain 
X §  

10 2 2 
GN~ G = s { kT +T8 r (6) 

nb 2 

(We note that the form of eq.(6), G = ~1 ~ + ~p GN ~ , is in agreement 
with experiment (GOTTLIEB et al 1981). I f  we ~er~ to use eq.(2) to 
describe the uncross-linked, parent polymer, minimized that free energy 
expression with respect to n to obtain the equilibrium segment l ine 
density, ( n / l ) ,  and then used the result inoeq.(6 ), we would predict 
that the shea~ modulus is proportional to G~ and is independent 
of ~. (MARRUCCI 1981). The Flory junction 91uctuation suppression model 
of rubber elast ici ty predicts that G is proportional to ~ and is 
independent of G N ). 

The swelling behavior of a network chain in the three-tube model is 
calculated using the free energy expression in eq.(2) and taking l and a 
to both vary directly with k 

A IF9 I~ ~2 ~ 2 n b 2 L  x-2 ~] 
k-T = ~12nb 2 s + ~ r  + 6 In (7) 

a o 

According to eq. (7), each of the ends of a network chain contributes 
a InZ term for the junction i t  is connected to. The total free energy 
of a perfect network of ~ network chains is therefore 

2 X2 2 nb 2 X-2 ANetwork 31 o 
= s ~ + 2 r ~ + ~ In X (8 )  

kT 2 nb 2 3 a 
o 

where we have divided the logari thmic term by four to avoid an 
overcounting of the junct ion contr ibut ion to the network f ree energy 
which arises from the fact that each junct ion in a perfect network has 
four chains attached to i t .  
(Noting that (~/2) equals the number of junct ions,  p, in a perfect 
network, the logarithmic term in eq.(8) is the same as the term 
representing the f luc tuat ion of a junct ion wi th in the soft tubes 
surrounding the chains emanating from the junct ion (MARRUCCI 1981)). 
The e las t ic  contr ibut ion to the chemical potent ia l  of the d i luent  in an 

i so t rop ica l l y  swollen network, X.(~ - ~o)el,  is given by 

-l"-'A~t Network)/~x" Maximizing X.(~ - ~o)e I with respect to ~ we f ind 
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[~ 2 nb 2 r ~]1/2 
Xma x = a~ 2 (9) 

(We note that the prediction that x.(~ - ~o)el passes through a maximum 

is in qualitative agreement with experiment (BROTZMAN and EICHINGER 
1982)). 

The Non-Equilibrium, Elastic Response of the Model 

The assumption that the tube cross section changes as a function of the 
change in the chain length, so as to conserve the tube volume implies 
that defect chains, i .e . ,  loops, dangling ends and sol chains, do not 
contribute to the equilibrium elastic response of a cross-linked rubber, 
i f  after the imposition of a ~train, the end-to-end separations of these 
defect chains eventually relax back to their unperturbed values. 
Nonetheless, these defect chains should bear the responsibility for the 
time-dependent, non-equilibrium elastic response of the network. 

We can very simply incorporate time dependence into the tube model by 
making use of the experimental factorabil ity of time and deformation in 
polymeric stress behavior (THIRION 1982), 

~(t,X) = g(X).f(t) (I0) 

In the case of a static, step strain deformation, dangling ends and sol 
chains in i t i a l l y  deform in the same manner as network chains. We can 
therefore calculate g(x) using eq.(5) from the tube model. The quantity 
f ( t )  is the fraction of segments in a chain, remaining in the tube at 
time t .  I t  can be obtained using the f i rs t  passage time problem 
analysis (DOI 1980). According to this calculation, f ( t )  for a sol 
chain having n segments, is given by the solution to the f i rs t  passage 
time problem for a free particle 

f ( t )  ~ exp(-81t/n 3) (11) 

while f ( t )  for a dangling end having n segments, is given by the 
solution to the f i rs t  passage time problem for a particle in a harmonic 
potential 

f ( t )  ~ exp[-82t/(n3e63n)] (12) 

(We note that another method has been developed for calculating f ( t )  for 
a dangling end, based on the number of 'tree' conformations of a loop 
(deGENNES 1975, 1979). 

We can also treat the dynamic stress response of these defect chains 
using a superposition principle, whereby the stress at a given time is 
obtained by summing the contributions of eq.(lO) for the deformation 
increments which have occurred at previous times (MARRUCCI and HERMANS 
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1980). This results in the expression 

t 
~(t,X) = f g { ~ ( t , t ' ) ) . f ' ( t  - t ' ) d t '  (13) 

when f '  = - d f ( t ) /d t  and g is calculated on the basis of the deformation 
between t '  and t .  

Conclusion 

The tube model (GAYLORD, 1979, MARRUCC11981, GAYLORD, 1982) seems to 
offer a very useful theoretical approach to rubber e las t ic i ty .  
I t  predicts, at least qual i ta t ive ly ,  and in some cases quant i tat ively,  
the equilibrium stress-strain, modulus and swelling behavior of cross- 
linked elastomers. I t  can also be used to describe the time-dependent, 
non-equilibrium elastic response of cross-linked elastomers. 
In view of these accomplishments, we are presently continuing to modify 
and refine the details of the theoretical model and to examine i ts  
experimental implications. 
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